
NSWI120 - Page 1/2 (variant 2 – 2014.01.24)
Write your answers to the special response sheet you received (with your name and photograph). If you are using more than
single sheet of paper for your answers, then mark each sheet with is number / total number of sheets will hand over.

Task 1
Microprocessor MOC 6502 is an 8-bit processor having a
16-bit address bus (memory address space), and an
accumulator architecture. The accumulator register is
named A in the 6502 assembler. Processor also features a
FLAGS register including a Carry (C) flag with a standard
meaning.
Processor 6502 has the following instructions:

 LDA $address/#constant (Load Accumulator) –
reads an 8-bit value of the given 16-bit address ($
marked argument) or immediate value (# marked
argument) into the accumulator.

 STA $address (Store Accumulator) – saves
contents of accumulator into memory location
identified by the given 16-bit address

 ADC $address/#constant (Add with Carry) –
addition of two 8-bit numbers and the C flag (second
number is given as the only instruction argument)

 SBC $address/#constant (Subtract with Carry) –
subtraction of two 8-bit numbers and negation of
the C flag (second number is given as the only
instruction argument)

 CLC (Clear Carry) – set C to 0 (no expl. args.)

 SEC (Set Carry) – set C to 1 (no expl. args.)
Rewrite the following statement from Pascal into an
equivalent sequence of 6502 machine code instructions
(assembler). The E and F are 16-bit unsigned little-endian
integer global variables located on the following
addresses: E = E002h, F = F002h). All operations should
be carried out in 16-bit unsigned arithmetics:

 E := E + F + 16

Task 2
The Unicode encoding defines the following assignment
of codes to given characters: code 158h for char ‘Ř’, code
52h for char ‘R’, code 65h for char ‘e’, code 70h for char
‘p’, code 61h for char ‘a‘, and code 30Ch for combining
character for diacritic caron (or haček) (the same diacritic
as in the ‘Ř’ character).
a) Is in the Unicode any difference in meaning

(interpretation) of a single character 158h and a
character sequence 52h 30Ch? If so, what is the
difference?

b) We would like to store text “Řepa” in little endian
UTF-16 encoding to memory starting at address 0.
Using a hexadecimal format write values of all bytes
of memory (starting with byte at address 0)
representing the text given above in the given
encoding.

Task 3
Having the following number:

-256.625
write its value as a binary 32-bit floating point number.
Mantissa is 23 least significant bits, and is normalized
with hidden one. Mantissa is followed by an 8-bit
exponent (stored in +127 bias format). The most
significant bit represents a sign. Write the result as values
of the 32 bits (ordering them left to right MSB first).

Task 4
An 8-bit microcontroller (MCU) Intel 8051 with
accumulator architecture has the following instructions:

 MOV A, #constant – load of an 8-bit immediate
value into the accumulator

 ADD A, address – addition (without carry) of an
8-bit value stored on given 8-bit address

Suppose the in the internal memory of our 8051 MCU is
starting from address 0 stored the following program in
8051 machine code (every second line represents the
instruction rewritten in 8051 assembler):

0x74 0x05
 MOV A, #5

0x25 0x03
 ADD A, 3

0x25 0x04
 ADD A, 4

If the computer starts executing the program (e.g. as a
result of an unconditional jump to address 0) , decide,
whether it is possible (from the information given here)
to definitely state the final content of register A after
execution of all the instructions of the program above … ?
If so, what is A’s value? Important note: MCU 8051 has a
strict Harvard architecture.

Task 5

Three MCUs A, B, a C are connected to a single I2C bus. All
connected devices are using 100 kb/s transfer rate and 7-
bit addressing. The MCUs are assigned the following
addresses: A = 02h, B = 07h, C = A1h. When no one is
accessing the bus, the A MCU decides to send two bytes:
AA 0F to MCU B. Draw and describe graphs of voltage
levels (and their logical values) on lines Serial Data (SDA)
and Serial Clock (SCL) during the whole transfer (assume
no errors happen during the whole transfer).

Task 6

Describe all typical states of a thread in a typical
multithreading system. Include description of all typical
transitions between these states, and define when such
transitions happen.

NSWI120 - Page 2/2

Task 7
We have an IBM PC compatible computer with an Intel
80386DX CPU (32-bit microprocessor with 32-bit address
and data buses, and a separate 16-bit I/O address space).
The system’s motherboard has 16-bit ISA slots only (16
data + 24 address lines + a line to differentiate memory
and I/O bus transactions [M/IO]), and does not contain
any high capacity storage device (like hard drive, or
floppy disk drive) controller.

There are few additional devices inserted into the
motherboard: 2 SIMM memory modules with total
capacity of 2 MB of DRAM, a 16-bit VGA Trident 8900C
graphics card with 512 kB of video RAM in the 1st ISA slot,
and in the 3rd ISA slot a 16-bit 3Com 3c509C network card
connected to a 10 Mbit Ethernet network via an UTP
cable (and the computer’s neighbor network
infrastructure is configured to our needs).

When we turn the computer on, it boots into the MS-DOS
5.0 operating system by downloading its kernel from a
neighbor network server. Describe all actions since
pressing the ON button, until the system starts loading
the MS-DOS kernel. Especially describe what instructions
(of what programs?) is the CPU executing (and where it
gets them) during the whole computer start-up
sequence.

Task 8
We would like to program a wide variety of different
applications, all of them having a graphical user interface
(GUI). We plan to distribute binary executable for every
such application both for Linux and Mac OS X, however
each of these operating systems has a different GUI API
(incompatible with each other), and our source
programming language does not have any GUI
programming built-in support. We would like to
implement every application only once, thus we need its
source level portability between Linux and Mac OS X.
Describe a best suitable approach to solve the problem.
Describe the whole compilation process of all the code
necessary to get the final binary executables.

Task 9
(For up to 2 points)

We have a computer with a 32-bit memory address bus.
The system has 64 kB of ROM (mapped continuously to
the highest addresses in the address space), and 0.25 GB
RAM (mapped continuously from address 0 upwards)
installed. The only exception are addresses 1F1h to 1F8h
that are mapped to a HDC ports via MM I/O mechanism.
We are implementing part of the computer’s firmware
stored in the ROM mentioned. Your task is to implement
function Write (and all other funcs/procs that you need
as well) having the prototype specified below – its goal is
to write a single sector (512 bytes) of data to a hard disk
drive, where: sector argument defines a target sector
number, data argument contains a pointer to 512 bytes
of date in memory to be written to the target sector (it
points to the first of the 512 bytes of data). Function

must return to caller as soon as possible, and must not
wait for actual write operation completion (i.e. it is an
asynchronous I/O operation). The function returns: (a)
True, if the write operation was successfully started, (b)
False, if there is another write operation pending or
communication with HDC failed:

type
 PByte = ^Byte;
function Write(sector : Word;
 data : PByte) : Boolean;
procedure InitHarddisk;
procedure SetInterruptVector(

intVec : Integer;
handlerRoutine : Pointer);

You can assume the rest of the firmware code will call
your procedure InitHarddisk (see above), that you
can use to implement any initialization of your HDC
communication infrastructure necessary (e.g.
initialization of any global variables). The firmware also
implements procedures SetInterruptVector, that
modifies the target address for interrupt vector intVec
to an address of a handler routine passed in the
handlerRoutine argument (pointer to the first
instruction). You can assume that all interrupts are
masked during whole execution of any such handler
procedure.
The communication with the HDC is done via PIO mode.
To start a write operation to a connected hard disk drive,
you have to execute the following sequence of writes
into controller’s ports (each line begins with an address,
where the relevant port is mapped):
1) 1F6h: most significant 8 bits of sector number
2) 1F4h: least significant 8 bits of sector number
3) 1F8h: 8-bit command ID: command WRITE SECTOR

= value 80h
Next step is to wait until the controller signals it is ready
to receive data – it indicates such state by clearing
(setting to 0) the 7th bit (counting from 0) (called
BSY [Busy]) mapped to address 178h. Then all the sector
bytes are sequentially written into controller’s data port
mapped to address 171h. Writing a byte into the data
port causes the controller to set the BSY bit to 1 again.
Next byte can be written into the data port only after
controller signals its ready state by resetting the BSY bit
back to 0. Each time the controller resets the BSY to 0 it
generates an interrupt request 14. Please note that it is
necessary to verify in the interrupt 14 handler, that the
source of the interrupt is the HDC, as other devices can
assert the same IRQ or a spurious interrupt might have
happened (such interrupts can be ignored).
Assume the system is not using segmentation nor paging,
and that the Word type is an unsigned 16-bit number.

